167 research outputs found

    Sustainable Strategies for Managing Bacterial Panicle Blight in Rice

    Get PDF
    Bacterial panicle blight (BPB) is present in more than 18 countries and has become a global disease in rice. BPB is highly destructive and can cause significant losses of up to 75% in yield and milling quality. BPB is caused by Burkholderia glumae or B. gladioli, with the former being the primary cause of the disease. Outbreaks of BPB are triggered by conditions of high temperatures in combination with high relative humidity at heading. The disease cycle starts with primary infections from infected seed, soil, and irrigation water, and subsequent secondary infections result from rain splash and panicle contact. Limited management options are available for control of BPB. There are only several cultivars including hybrids with partial resistance available currently. Twelve quantitative trait loci (QTLs) associated with the partial resistance have been identified. Oxolinic acid is an effective antibacterial compound for control of BPB in Japan, but it is not labeled for use on rice in the USA and many other countries. Sustainable control of BPB relies on integrated use of available management strategies of exclusion, genetic resistance, chemical control, biocontrol, and cultural practice. Developing and use of resistant cultivars is the best strategy to minimize the damage caused by BPB and maximize rice production in the long term

    UAV Remote Sensing: An Innovative Tool for Detection and Management of Rice Diseases

    Get PDF
    Unmanned aerial vehicle (UAV) remote sensing is a new alternative to traditional diagnosis and detection of rice diseases by visual symptoms, providing quick, accurate and large coverage disease detection. UAV remote sensing offers an unprecedented spectral, spatial, and temporal resolution that can distinguish diseased plant tissue from healthy tissue based on the characteristics of disease symptoms. Research has been conducted on using RGB sensor, multispectral sensor, and hyperspectral sensor for successful detection and quantification of sheath blight (Rhizoctonia solani), using multispectral sensor to accurately detect narrow brown leaf spot (Cercospora janseana), and using infrared thermal sensor for detecting the occurrence of rice blast (Magnaporthe oryzae). UAV can also be used for aerial application, and UAV spraying has become a new means for control of rice sheath blight and other crop diseases in many countries, especially China and Japan. UAV spraying can operate at low altitudes and various speeds, making it suitable for situations where arial and ground applications are unavailable or infeasible and where precision applications are needed. Along with advances in digitalization and artificial intelligence for precision application across fertilizer, pest and crop management needs, this UAV technology will become a core tool in a farmer’s precision equipment mix in the future

    Spectroscopy Technology: An Innovative Tool for Diagnosis and Monitoring of Wheat Diseases

    Get PDF
    Diseases are among the most important factors limiting worldwide production of wheat. Accurate detection of diseases is the key to develop effective management strategies for control of these diseases. Spectroscopy-based technology can be a non-destructive, quick, efficient tool to accurately detect and monitor the occurrence and development of crop diseases. There has seen an increased interest in the research and application of spectrum technology for the diagnosis and detection of wheat diseases in recent years. This book chapter provides a brief review on research advances in using spectroscopy techniques to detect wheat diseases, with a focus on the diagnosis and detection of Fusarium head blight, powdery mildew, and stripe rust, three important fungal diseases in wheat worldwide. Disease symptoms and traditional disease detection methods are also included. Both literature and our original research data are presented, with the section of conclusion and prospects at the end of this book chapter

    Parallel momentum distribution of the 28^{28}Si fragments from 29^{29}P

    Full text link
    Distribution of the parallel momentum of 28^{28}Si fragments from the breakup of 30.7 MeV/nucleon 29^{29}P has been measured on C targets. The distribution has the FWHM with the value of 110.5 ±\pm 23.5 MeV/c which is consistent quantitatively with Galuber model calculation assuming by a valence proton in 29^{29}P. The density distribution is also predicted by Skyrme-Hartree-Fock calculation. Results show that there might exist the proton-skin structure in 29^{29}P.Comment: 4 pages, 4 figure

    The LAMOST Survey of Background Quasars in the Vicinity of the Andromeda and Triangulum Galaxies -- II. Results from the Commissioning Observations and the Pilot Surveys

    Full text link
    We present new quasars discovered in the vicinity of the Andromeda and Triangulum galaxies with the LAMOST during the 2010 and 2011 observational seasons. Quasar candidates are selected based on the available SDSS, KPNO 4 m telescope, XSTPS optical, and WISE near infrared photometric data. We present 509 new quasars discovered in a stripe of ~135 sq. deg from M31 to M33 along the Giant Stellar Stream in the 2011 pilot survey datasets, and also 17 new quasars discovered in an area of ~100 sq. deg that covers the central region and the southeastern halo of M31 in the 2010 commissioning datasets. These 526 new quasars have i magnitudes ranging from 15.5 to 20.0, redshifts from 0.1 to 3.2. They represent a significant increase of the number of identified quasars in the vicinity of M31 and M33. There are now 26, 62 and 139 known quasars in this region of the sky with i magnitudes brighter than 17.0, 17.5 and 18.0 respectively, of which 5, 20 and 75 are newly-discovered. These bright quasars provide an invaluable collection with which to probe the kinematics and chemistry of the ISM/IGM in the Local Group of galaxies. A total of 93 quasars are now known with locations within 2.5 deg of M31, of which 73 are newly discovered. Tens of quasars are now known to be located behind the Giant Stellar Stream, and hundreds behind the extended halo and its associated substructures of M31. The much enlarged sample of known quasars in the vicinity of M31 and M33 can potentially be utilized to construct a perfect astrometric reference frame to measure the minute PMs of M31 and M33, along with the PMs of substructures associated with the Local Group of galaxies. Those PMs are some of the most fundamental properties of the Local Group.Comment: 26 pages, 6 figures, AJ accepte
    • …
    corecore